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ABSTRACT: Hydrocode calculations for spherical shock propagation using the
artificial-viscosity method are carried out to 0.2 psi overpressure for a nuclear
explosion and for a TNT explosion. An ideal-gas integration from the literature
is used to extend the results to 1.6 x 10-4 psi. Below 1.0 psi, 1 kt nuclear is-
equivalent to 0.7 kilotons of TNT.
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LMIG-RANO PROPAGATION OF SPHERICAL SHOCKWAWES FROM EXPLOSIONS IN AIR

Although there has been occasional interest in using analytical
techniques to predict explosion shockwave pressures out to large
distances, there has been little emphasis on employing modern
computer techniques to provide such predictions. Use of nuclear
explosioas for peaceful purposes-such as digging a canal-requires
accurate evaluation of possible airblast damage among other
considerations. A necessary part of the airblast evaluation is an
accurate free-air pressure-distance curve for explosions. This
report presents results obtained toward that end for both nuclear
and for TNT explosions.

This investigation was sponsored jointly by the Defense Atomic
Support Agency (under FU 1004, Work Unit 1027) and by the
Atlantic-Pacific Interoceanic Canal Feasibility Studies Program
(Nuclear Safety Program--Acoustic Wave Effects Project).
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Captain, USN
Commander
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1! ~1. IN~TRODUCOTION

In the past, most hyd"ocode calculations for explosions in real
air were stopped at shock overpressures near 1.0 psi either because
of numerical difficulties or because of lack of interest in such low
pressures. In this report we discuss calculations that we have
carried out to about 0.2 psi.

We are concerned here only with sea-level, free-air explosions;
i.e., explosions that occur in an infinite volume of air at one
atmosphere pressure and 150C. Results for this uniform-atmosphere
situation are of interest because thay can be used as base data for
calculations including atmospheric perturbations.

2. THE PRESME CALCUATIONS

2.1 Nuclear ~Xulosiong
A homogeneous-sphere model is used for the explosion. The

initial condition is a quiescent sphere of heated real air 4.251 meters
"in ;dius, at ambient density (0.001225 g/cm3 ) and containing IKT
(IO0- calories) of internal energy. The solution to this initial-valia
problem is generated by the WHIM hydrocode (reZ. 1), with changes to
the rezoning routine, a more accurate equation of state for air, and
double precision in critical quantities. A zone size of two meters
was used in the shock wave. To prevent excessive rounding of the
shock front, the linear viscosity was decreased as the shock became
weaker.

The calculated overpressure vs distance data are given in columns
I and 4 of Table I and in Figure 1. (The calculations were stopped at
0.2 psi because of high computer cost.) These data are in satisfactory
agreement with nuclear test data over the range 104 to 7 psi as Shown on
Figure 1 of ref. 2a for earlier MIDY calculations. Below 10 psi
the present calculations are found to agree with the aircraft curve
of Figure 3.3-7 of ref. 2b. Figure 1 also shows the lower end of the
theoretical Problem M curve (ref. 3).

2.2 TVT Exrolosion
A similar calculation was made for a one-pound sphere of THT.

The ccnditions inside the charge at the time the detonation wave reaches
the surface were calculated from the spherical Taylor wave with the
LSZK equation of state for the explosion products (ref. 4). These
calculations are similar to those reported in reference 5 except that
a more recent equation of state for air was used and the calculation
was carried much further (ref. 5 stopped at 2.5 psi). A zone size
of one cm was used in the shock wave.

The calculated overpressure vs distance data are given in columns
1 and 5 of Table I and in Figure 2.
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3. EXTEnSION OF PRESENT CALCULATIONS

3.1 Soviet CalcuIltions
The problem of a nuclear e xplosion in i air (ganma=l.4) has

been calculated by Erode (ref. 6), by CGidstine and von Neumann
(ref. 7), and by Okhotsimskii, et al (ref. 8). All of these calculations
stop near 1.0 psi. Brode used the artificial viscosity method.
lReferences 7 and 8 used shock fitting. All of these solutions are in
excellent agreement. We also calculated this problem with WUNDY to
about 1.0 psi to verify our method of calculation and found excellent
agreement with these previous solutions.

The ideal air situation is of interest here because the calculation
of reference 8 was extended by Okhotsimskii and Vlasova (ref. 9) to a
very large distance (to 0.00016 psi). They continued to use shock
fittin& but rewrote the difference equations for the flow behind the
front in terms of overpressure, overdensity, etc. to avoid nunmerical
difficulties. (We did the 4quivalent thing by using double precision
in our calculations.) The solution in reference 9 was carried to 0.03
psi, where it was stopped by numerical instabilities. It was carried
further by an approximate method of Khristianovich. The net result was
a nunerical solution out to 0.00016 psi. The numerical values for
overpressure vs radius are given in columns 1, 2 and 3 of Table I.
The logarithmic slope of the pressure vs distance curve is shown in

i Figure 3. The slope has the point source value of -3.0 near the
explosion and gradually approaches -1.0 at low pressures. Figure 3
also shows the slope for the present real-air calculation4.

We will use this Okhotsimskii-Vlasova solution for ide-a air to
extend our present calculations for _ air.

3.2 Asgmptotig Behavior
The problem of propagation of a spherical shockwave to very large

distances has been considered by Kirkwood and Bethe (ref. 10), by
Landau (see ref. 11), and by Whitham (ref. 12), all of whom arrived at
the following asymptotic formula for decay of peak overpressure:

AP = A[ br 1- (1)

where AP is peak shock front overpressure, r is radial distance frcm
the origin to the shock front, and A and b are constants. This
equation arises from an argment based on the logarithmic divergence
of the characteristics behind the shock front. Equation (1) has been
used by Miles (ref. 13) to extend the numerical calculations of
Brode (ref. 34) to very low pressures.

This equation is consistent with the Okhotslmskii-Vlasova solution;
we were able to fit their calculated results within one peroýnt for
the range below 0.4 psi.

We have not used this equation in the results we give in this
report. It has been used here only as a check on the asymptotic
behavior of the Soviet calculation.

2
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iiI- 4. EFFECTIVE BLAST YIELDS

Each of these calculations obeys yield scaling exactly; i.e., the
radius at which a given overpressure occurs is proportional to the
cube root of the explosion energy. However, the three different
types of explosions considered here (nuclear in ideal air, nuclear in
real air, and TMT in real air) all give different amounts of dissipation
near the source and thus have different amounts of energy available for
the far-out blast wave.

We can compare the "effective blast yields" of two explosions by
simply noting the distances at which a given overpressure occurs.
The farther anexplosion is able to give a given overpressure, the
greater its effective yield. The effective yield ratio (at a given
overpressare) of two explosions is simply the cube of the distance
ratio. Figure 4 shows the effective blast yield of the calculated
lET nuclear explosion vs to calculated one pound TNT explosion scaled
to two million pounds, both in real air. The line is drawn by se• through

the calculated points. The effective yield varies with overpressure, a5
expected, since the pressure-vs-distance curves are not parallel. The

* effective yield appears to settle down near 0.7 below 1.0 psi*. This
gives an energy equivalence, for explosions in real air:

0.7 kilotons TINT = l.OKT nuclear (below 1.0 psi).

In a similar way, the ideal nuclear explosion can be compared with
the real-air nuclearEAplosion. Figure 5 shows the effective yield.
The energy equivalence at low pressures is:

0.7MKT nuclear, ideal air = l.OKT nuclear, real air
(below 7.0 psi).

Figure 5 also shows the energy equivailence for the Problem M calculation
(ref. 3). Problem M takes an upward turn near 2.0 psi.

If we assume that these effective yields reirain constant (i.e., that
the overpressure vs distance curves remain parallel) for all overpressures
below 0.2 psi, we can extend the real-air calculations by using the
ideal-air results with the appropriate effective yield. To get the
nucie s al-air distances, we multiply the ideal-air distances by
(0.71) = 0.892. To get the distances in meters for one pound of TNT,
we multiply the ideal-air distances by 7.98. (To get the distances for
1 kiloton of ;RIT, we multiply the ideal-air distances by
(0.71/0.70)1/3 = 1.005.) The "extendedn pressure vs distance data
are shown in columns 4 and 5 of Table i beginning at 0.1927 psi and are
marked by asterisks.

*The well-known value of 0.5 in the 5-50 psi range comes from TNT data
that lie about 15 per cent above the curve of Figure 2.



5. M-•@ARSONS WITH EXI-ERDENT

The agreement of the nuclear real-air calculation with experimental
free-air data (not shown here.) is satisfactory in the 0.1-100 psi region.

For high explosives, the only available free-air data below 0.1 psi
are from Project BANSE. ANSE events were 500-1b pentolite
(not TUT) spheres detonated at altitudes up to 103.,000 feet. Kzicrobarograph

measurements were made at the ground by Sandia and by BRL. The San ia data(ref. 15) are shown on Figure 2. The slant range divided by (500)1/3= 7.9,4

is plotted against measured reflected overpressure divided by twc to convert
it to incident overpressure. These events took place in non-sea level
ambient conditions. The use of slant range versus overpressure corresponds

i to assuming that modified Sachs scaling holds (ref. 16).

BThe ANSHE data are quite near the theoretical curve (Fig. 2).

Some 3urface-burst data are available in the 0.003-. psi range. It
ic not necessarily appropriate to compare free-air pressures with surface-
burst pressures measured near the surface. However, two sets of surfaci
burst data are shown for corparison in Figure 2.

BRL urface burst data: These data are pressure-gage measurements (ref. 17)
from 5, 20, and 100 ton surface bursts in Canada in 1959-61. The charges
were formed of TYE blocks stacked on the groiun to form a hemisphere. The
plotted distances have been divided by (2 W)Mf' to reduce them to one pound
in free air. (The factor of 2 used here is for a rigid surface and does
not allow for close-in energy losses to the ground. This number may be as
low as 1.5, depending on which free-air data are used in obtaining it. The
exact value does not matter for our purposes.)

NOL micro-ton surface burst data: The dashed line on Figure 2 is a fit to
145 pressure-gage measurements (ref. 18) from surface-burst #6 electric
blasting caps having an equivalent yield of 0.44 grams TNT:

S8.21 R 1 4 2

where Ap is overpressure in psi and, 3is radius in feet. The plotted
distances have been divided by (2 W)@' to reduce them to one pound in
free air.

The surface-burst data agree quite well with the calculated free-air
curve down to about 0,2 psi. Below 0.2 psi the surface-burst data have a
much faster rate of decay of pressure with distance than does the free-air
calculation. This may be a real difference between surface bursts and
free-air bursts due to energy losses from drag at the shock wave-ground
interface. However, it should be pointed out that Forzel (ref. 19) has
developed a free-air shock propagation theory that disagrees with the
present calculations and agrees very well with the surface burst data.

4
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6. CONCI.USIuNS 
I

Hydrocode calculations have been carried out to 0.2 psi and
extended to 0.00016 psi for a nuclear explosion in real air and for

; a TNT explosion in real air. The resulting pressures agree well with

data near 0.001 psi from high altitude explosions of pentolite spheres.

5
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Table I

Peak Overpressure Vs Radius

Overpressure Overpressure Ideal Nuclear Real Nuclear 1-lb TIT
(psi) (bars) Radius (kn) Radius (kim) Radius (mn)

25600. 1765. 0.01548
21660. 1493. .01637
18470. 1274. .01726
14420. 994.4 .01875
12470. 791.2 .02024

9281. 639.9 0.02172 0.0192
7616. 525.1 .02321 .0204 0,042
6326. 436.2 .02469 .0215 .054
5313. 366.3 .02618 .0227 .06'7
4506. 310.7 .02766 .0240 .082

3854. 265.8 0.02915 0.0252 0.097
3138. 216.4 .03123 .0268 .120
2394. 165.0 .03420 .0292 .154
1868. 128.8 .03718 .0314 .185
1487. 102.5 .04015 .0339 .219

12,04. 83.00 0.04312 0.0362 0.250
989.3 68.21 .04609 .0385 .285823.3 56.77 .04907 .0410 .318
692.9 47.77 .05204 .0435 .350
589.1 40.62 .05501 .- W60 .380

505.3 34.84 0.0579"8 0.0485 0.412
413.4 28.50 .06214 -0543 .458
317.8 21.91 .06809 .0575 .519
250.4 17.26 .07404 .0624 .580
201.5 13.89 ,97999 .0687 .642

165-- 11.39 0.08594 0.0740 0.700
137.5 9.481 .09189 .0789 .76o
116.1 8.006 .09784 .0846 .810
99.27 6.844 .1038 .0892 .875
85.79 5.915 .1097 .0946 .910

74.87 5.162 0-1157 0.0997 0.955
62.78 4.329 .1240 .1069 1.02
50.08 3.453 .1359 .1182 L134
40.97 ?.825 .1479 .1295 1.25
34.22 2.359 .1598 .1404 1.35

29.09 2.006 0.1717 0.1516 1.45
21.93 1.512 .1956 .173 1.65
19.38 1.336 .2075 .184 1.75
17.28 1.191 .2194 .194 1.84
13.56 0.9347 .2481 .221 2.08

8



Table I (Contd)

Overpressure Overpressure Ideal 'Nuclear Real Nuclear 1-lb TNT

(psi) (bars) -Radius (]cn) Radius (kin) Radius (m)

11.38 0.7847 0. 2719 0.243 2.27
9.743 .6718 .2958 .265 2.45
8.474 .5843 .3196 .284 2.63
7.468 .5149 .3435 .307 2.82
6.654 .4588 .3673 .329 3.00

5.426 0.3741 0.4150 0.370 3.39
4.549 .3137 .46Z7 .41.3 3.77
4.074 .2809 .496o .4/2 4.01
3.533 .2436 .5436 .489 4.4)
3.109 .2344 .5912 .520 4.76

2.769 0.1909 0.6389 0.562 5.15
2.491 .1717 .6865 .603 5.50
2.065 .1424 .7818 .695 6.30
1.899 .1309 .8294 .731 6.67
1.586 .1093 .9437 .836 7.60

1.390 0.09585 1.039 0.922 8.4
1.235 .08518 1.134 1.01 9.1
.110 .07655 1.228 1.09 9.6

1.0007 .06942 1.323 1.18 10.7
0.9202 .06345 1.417 1.265 11.4

o.8466 0.05837 1.510 1.35 12.18
.7283 .05022 1. 697 1.52 13.66
.6377 .04397 1.884 1.68 15.08
.5662 .03904 2.070 .i85 16.66
.4609 .03178 2.44a 2.18 19.60

0.3873 0.02670 2.811 2.51 22.54
.2917 .02011 3.549 3.17 28.37
.2326 .01604 4.286 3.82 34.09
.1927 .01329 5.022 *4-48 39.76
.1641 .01131 5.757 *5.14 *45.9

0.1426 0.009M30 6.492 *5.79 *51.8
.1125 .007757 7.960 *7.10 *63.5
.09258 .006383 9.427 *8.41 *75.2
.07845 .005409 10.89 *9.71 *86.9
.06793 .004683 12.36 *11.03 "98.6

* Scaled from the ideal nuclear data.

L9I+
I
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Table I (Comt'd)

Overpressume Ovrpressure Ideal Nuclear Real Nuclear 1-lb TNT
(psi) (ba3s) Radius (ki=) Radius (kin) Radius (m)

0.05981 0.004 13.82 *12.33 *110.3
.04813 .003318 16.75 *14.94 *133.7
.04015 .002769 19.68 *17-55 *157.0
.03438 .002370 22.61 *20.2 *180.
.03001 .002069 25.54 *22.8 *2%.

0.02659 0.001834 28.47 *25 .4 *227.
.02318 .001598 32.13 *28.7 *256.
.01846 .00)272 40.91 *316-5 *326.
.01526 .001052 46.76 *41.7 *373.
.01076 .0007416 64.32 *57.4 *513.

0.007659 0.0005281 87.73 *78.2 *700.
.004813 .0003318 134.5 *120. *1073.
.002880 .0001986 216.5 *193. *1728.
.001684 .0001161 356.9 *318. *2850.
.0007337 .00005058 778.2 *694. *6210.

0.0001639 0.00001130 3212. *25. *25600.

* Scaled fri the ideal nuclear data.

10
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